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Abstract— This paper presents a study on pedestrian classi-
fication based on deep learning using data from a monocular
camera and a 3D LIDAR sensor, separately and in combination.
Early and late multi-modal sensor fusion approaches are
revisited and compared in terms of classification performance.
The problem of pedestrian classification finds applications in
advanced driver assistance system (ADAS) and autonomous
driving, and it has regained particular attention recently
because, among other reasons, safety involving self-driving
vehicles. Convolutional Neural Networks (CNN) is used in this
work as classifier in distinct situations: having a single sensor
data as input, and by combining data from both sensors in the
CNN input layer. Range (distance) and intensity (reflectance)
data from LIDAR are considered as separate channels, where
data from the LIDAR sensor is feed to the CNN in the form of
dense maps, as the result of sensor coordinate transformation
and spatial filtering; this allows a direct implementation of the
same CNN-based approach on both sensors data. In terms of
late-fusion, the outputs from individual CNNs are combined
by means of learning and non-learning approaches. Pedestrian
classification is evaluated on a ‘binary classification’ dataset
created from the KITTI Vision Benchmark Suite, and results
are shown for each sensor-modality individually, and for the
fusion strategies.

I. INTRODUCTION

Despite of the numerous traffic signals, crosswalks and
pedestrian safety signage, the number of accidents between
cars and pedestrians is sadly very high. Thus, the develo-
pment of advanced perception systems (e.g., pedestrian de-
tection) is a promising step forward to reduce drastically the
number of accidents on the roads. Therefore, sensor-based
pedestrian detection systems have attracted many studies
from the scientific community [1], [2], [3], [4]. The recent
advances in pedestrian safety systems are remarkable, but
it is still a challenging task because, among other reasons,
light influence and appearance (scale, texture, position) of
pedestrian is subject to numerous changes and also occlusion
[3].

An important item in a pedestrian classification system is
the type of sensor used to capture road scenes. In this regard,
one can categorize the sensors as passive or active. Cameras,
which belong to the first category, are the most widely
used sensor in pedestrian classification and detection [5].
However, passive sensors have disadvantages as illumination
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variations effects and night vision difficultness [6]. On the
other hand, active sensors, like automotive radar and LIDAR
[6], [7], [8], are more robust against illumination changes and
also have the pro of measuring the range/distance directly.
The cons of the LIDAR sensors are the high prices and the
moving parts (however, some recently launched solid-states
LIDAR do not use moving mechanisms).

There are several datasets on pedestrian classification, a
review can be find in [5], such as: INRIA, NICTA, Caltech,
Daimler Monocular, Daimler Multi-Cue, ETH and KITTI.
In this paper we will use a ‘classification’ dataset built from
the KITTI suite [7]. KITTI is a state-of-the-art benchmark
for pedestrian detection in urban and road environments
and has the key advantage of providing synchronized and
calibrated data from monocular cameras and a 3D-LIDAR.
Furthermore, it provides examples of “partly occluded”,
“fully occlude”, “unknow” and “don’t care” region objects,
which make the classification or detection problem more
challenging and realistic.

In this paper, we present a study on pedestrian clas-
sification using deep convolutional neural network (CNN)
based on the TensorFlow architecture. CNN-based pedestrian
classification is performed on color images (RGB channels)
from a monocular camera and also on 3D LIDAR data
(depth and reflectance’s intensity level), in combination and
separately. LIDAR point clouds are used to generate high-
resolution (dense) depth and reflectance maps through a
bilateral filter (BF) implementation.

Although some papers address pedestrian detection1 and
classification/recognition interchangeably, the concept of
classification and detection are not the same. In short, and
ignoring the time variable dependency, the former depends
essentially on a classifier and correlate feature-space, while
the later has to deal with unknowns in position and size/scale
and depends on many factors related, but not limited, to:
hypothesis generation (e.g., clustering, salient region genera-
tion), hypothesis confirmation (a classifier), post-processing
(e.g., non-maximum suppression). However, in this work the
classification problem is particularly addressed motivated by
the fact that we are interested in exploring the contribution
of monocular-camera and LIDAR data without influence of
further elements. Thus, the contributions of this work are:
(i) study the capacity of deep-learning on LIDAR-based
maps, considering the range and reflectance data, applied to
pedestrian classification; (ii) evaluation of the classification

1The same rationale applies to ‘cyclist’ or ‘cars’ categories.



performance of early and late fusion strategies, based on
learning and deterministic fusion techniques.

The structure of this paper is as follows: in Section II re-
lated works are revisited. LIDAR based depth and reflectance
maps are explained in Section III. Section IV describes the
dataset, and the classification approaches are presented in
Section V. Results and conclusions are provided in Sections
VII and VIII respectively.

II. RELATED WORK

Pedestrian classification/recognition is a key research and
technological topic in the automotive industry and academia,
since it is the baseline of advanced pedestrian detection sys-
tems for ADS, ADAS, and automotive protection systems. In
[4], an experimental study on pedestrian classification is con-
ducted, exploring several combination of classifiers (SVM,
feedforward neural networks and K-nearest neighbors) and
presents a comparative analysis of global, local, adaptive
and nonadaptive features (PCA, Haar wavelets and local
receptive fields). The authors investigated the relationship
between classification performance and training sample size.
Finally, they concluded that global features performance is
lower than local ones, and that adaptive features are better
than non-adaptive.

In a more recent study [5], pedestrian classification is car-
ried out using multi-domain (visible and far-infrared (FIR))
and multi-modality data (intensity, depth and motion). The
main contributions in [5] are a public dataset with far-infrared
and visible images, and a study on features extracted from
both camera spectra. In this regard, intensity self-similarity
(ISS), local binary patterns (LBP), local gradient patterns
(LGP) and histogram of oriented gradients (HOG) were used
for feature extraction. The study was performed considering
individual methods and a fusion approach. For pedestrian
classification the FIR method has shown better results than
the other methods.

In the study developed in [9] it is possible to verify
the importance of considering a four-component combina-
tion for pedestrian detection. These components are feature
extraction, deformation handling, occlusion handling, and
classification. Then the learning formulation maximizes their
strengths through a cooperative process, that improves pedes-
trian detection accuracy.

Existing methods and approaches on pedestrian classifica-
tion (and object detection in general) use, most commonly,
camera-based solutions [10]. However, more recently the
number of works using LIDAR are rising in prominence
[11], [12], [13], [14], [15], [16]. In this paper, we explore the
multimodality fusion by combining distinct sensors modali-
ties (camera and LIDAR) and, additionally, by combining
different data from the same sensor modality (i.e., range and
reflectance from a LIDAR). Furthermore, we investigate two
schemes for fusion (early and late) where in the late fusion
we study numerous approaches.
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Fig. 1. Example of a point-cloud from the HDL-64E Velodyne 3D
LIDAR (extracted from KITTI dataset). In the scene, it is possible to see a
pedestrian.

III. DEPTH AND REFLECTANCE MAPS FROM
LIDAR DATA

The motivation is to use 3D point cloud to contribute to the
pedestrians classification using a deep CNN. For instance,
Fig. 1 shows a 3D point-cloud, gathered by a HDL-64E
Velodyne LIDAR, having a pedestrian in the scene.

Let consider the LIDAR output (or scan) in the form of
a point-cloud, defined as a set of points in 3D Cartesian
coordinate system (P3R), where the variables of interest
are the range (distance) and also the reflectance (intensity).
The set of points P, from a LIDAR scan, is assumed to
be in the image-plane reference system; i.e., P is in pixel
coordinates and is the result of a coordinate transformation
from R3 to the camera coordinate system and then to the
image-plane. P contains the points {p1,p2, . . . ,pn} and each
pi = (u,v,ra,re)i represents the position in pixel coordinates
(u,v)i, the range/distance value rai, and rei is the reflectance
as measured by the LIDAR. Therefore, to get the depth
map (DM) and a reflectance map (RM) it is necessary to
estimate the values of rai and rei in unsampled locations
of the LIDAR’s projected pixel-plane (hereafter, it is called
a Map). One way to get a DM and/or a RM is by means
of spatial filtering techniques, from image processing area,
which can be implemented by a sliding-window (a mask)
technique in a given space domain. Spatial filters, in image
processing, act directly on the pixels domain by combining
the ‘intensity’ of a group of pixels (belonging to the window)
to estimate the desired ‘intensity’ value of the central-pixel of
the mask [17]. In other words, and assuming a mask M with
size m×n, the ‘intensity’ value to be estimated/predicted is,
in this work, the variables rai and rei from the LIDAR points
P.

In this work, we decided to apply the bilateral filter, which
takes into account the distance and intensity of the pixels and
the formulation of the BF can be expressed as follows [17]:

r∗0 =
1

W ∑
xi∈M

Gσs(||x0− xi||)GσR(|r0− ri|ri (1)

where x0 = (u,v)0 is the location of interest, which is the
center of M, and r∗0 is the variable to be estimate, i.e., the
range and reflectance (ra; re) at x0. W is a normalization
factor that ensures weights sum to one, Gσs is inversely
proportional to the Euclidean distance between the center
of M and the sampled locations xi, and GσR controls the



Fig. 2. This picture illustrates, considering a given image-frame (1st row)
from KITTI dataset, a LIDAR scan as projected to the image-plane (the 2nd
row), and the corresponding DM and RM maps respectively.

influence of the sampled points based on their values ra or
re, depending on the case. If r0 does not exist in M, it was
considered the value r0 = min(ri), ∀ri ∈M. An example of
range (DM) and reflectance (RM) maps, by using bilateral
filtering on a projected 3D LIDAR’s point-cloud, is shown in
Figure 2. Notice that both maps, DM and RM, use only data
from the LIDAR and therefore camera data is considered for
calibration and visualization purposes.

IV. DATASET

We composed a “classification” dataset from the 2D
object-detection dataset of KITTI, where the classes are
given in the form of 2D bounding box tracklets: Car,
Van, Truck, Pedestrian, Person (sitting), Cyclist, Tram and
Misc. In this paper the classes were separated in two
classes/categories of interest: pedestrian and non-pedestrian
i.e., a binary classification problem. The number of pedes-
trian examples comprises 4487 cropped-images , while the
non-pedestrian class has 47378 cropped-images 2. Table I
gives a summary of the binary classification dataset em-
ployed in this study.

Figure 3 shows some pedestrian (positives) and non-
pedestrian (negatives) classification examples for the sensor
modalities used in this work i.e., camera and LIDAR. For
the LIDAR, Fig. 3 shows depth and reflectance maps.

2It was considered 70% for the training set (10% of that for validation)
and the remaining 30% for the testing set.

TABLE I
SUMMARY OF THE CLASSIFICATION DATASET

Training set n# positives = 2827
n# negatives = 29849

Validation set n# positives = 314
n# negatives = 3316

Testing set n# positives = 1346
n# negatives = 14213

Fig. 3. In the first row we have examples of pedestrians and non-pedestrians
from the monocular camera. The last two rows show the corresponding depth
and reflectance maps generated from LIDAR data.

V. CLASSIFICATION USING CNN

Knowing that deep CNN attained good performance,
AlexNet architecture was chosen to perform pedestrian clas-
sification3 [18]. The classifiers were trained using the Keras
and TensorFlow packages [19].

VI. SENSOR FUSION STRATEGIES

The combination, or fusion, of data from distinct sensors,
in the scope of object recognition, is usually performed by
early fusion or late fusion schemes [20]. In this work, we
considered both information fusion strategies. In the sequel,
we describe the way both strategies were used to combine
data from camera and LIDAR for pedestrian classification.

3We use batch normalization in the first two layers of the AlexNet CNN.
In the last layer a softmax activation function with two classes and dropout
of 50% was used. All images were re-sized to the size of 227×227. The
network was trained on 30 epochs, batch size equal 64, stochastic gradient
descent optimizer with lr = 0.001 (learning rate), decay = 10−6 (learning
rate decay over each update), momentum= 0.9, and categorical cross entropy
as loss function.



A. EARLY FUSION

For this case, we trained a CNN with 3 channels where
each channel received data from one modality, as follows:
the first channel of the input layer received gray-scale
images (from the camera), the second and third received the
depth and reflectance maps (from LIDAR) respectively. It
is an efficient and simple strategy to implement, and the
classification performance is higher than a single-modality
CNN model as demonstrated by the results (in Sect. VII).

B. LATE FUSION

The number of methods able to combine classifiers outputs
is extensive. On one hand, there are many simple (non-
learning) rules one can use, such as: average, maximum,
minimum, product, and so on. On the other hand, there
are learning-based techniques which usually achieve supe-
rior performance in classification but require more complex
implementations; these techniques depend, essentially, on
a model (generative or discriminative) learned from the
training set. In this study, we will provide results using
some simple rules, namely: average, minimum, maximum,
and normalized-product (which can be understood as a Naive
Bayes rule). Also, two more advanced fusion approaches
were implemented: one using Jensen-Shannon divergence,
and another employs a linear-SVM to combine the CNN-
classifiers.

1) NON-LEARNING FUSION TECHNIQUES: Denoting
Li the confidence (or probability) score yielded by deep-
models CNNi, (i = 1, · · · ,nc), where nc = 3, CNN1 is the
camera-based model, CNN2 comes from DM (depth), and
CNN3 refers to RM (reflectance) model. Four ‘simple’ fusion
rules are considered: average FMean, maximum FMax, mini-
mum FMin, and Naive-product FProd . The average rule sim-
ply calculate the simple mean of the CNN-classifiers outputs
FMean = 1

nc ∑
nc
i=1 Li. The maximum rule outputs the maxi-

mum value over the classifier responses, FMax = maxi{Li},
while the minimum rule is FMin = mini{Li}. Assuming
classifiers’ independence given the sensors modalities, the
Naive-product rule is expressed by

FProd =
∏

nc
i=1 Li

∏
nc
i=1 Li +∏

nc
i=1(1−Li)

(2)

To avoid non-informative likelihoods i.e., close-to-zero val-
ues due to the product operation, a small additive-smoothing
Prior was added to Li.

2) JS BASED STRATEGY: This fusion strategy resorts to
weights based on Jensen-Shannon (JS) divergence computed
from the training set. The fusion approach is a probabilistic
mixture model using the current test set posterior given by a
specific classifier and the weights assigned to each modality
as follows:

P(γ|λ1,λ2, ...λn) = α×
N

∑
i

P(λi|γ)×wi, (3)

where P(γ|λ1,λ2, ...λn) is the fusion posterior;
{P(λ1|γ),P(λ2|γ), ...P(λn|γ)} are probabilities attained

using CNN for each sensor modality; wi is a JS-weight for
each modality learned from the training set observations;
and α is a normalization factor (taking into account all
classes).

The Kullback-Leibler (KL) divergence [21] is an asym-
metric measure of the difference between two probability
distributions. However, a symmetric measure is obtained
by averaging the KL divergence, also known as Jensen-
Shannon divergence (a.k.a. total divergence to the average
[22]). Based on that, the divergence between prior and
posterior distributions is computed, where the prior is the
global weight learnt given the training set (see [23]) and the
posteriors in this model are given by the classified frames
precedent to the current frame from the training set. The
weights for each modality are calculated as follows:

DKLi(P(o
{1:t−1}
i ) ‖ P(wg

i )) =
t−1

∑
l=1

P(ol
i)

P(ol
i)

P(wg
i )
, (4)

DKLi(P(w
g
i ) ‖ P(o{1:t−1}

i )) =
t−1

∑
l=1

P(wg
i )

P(wg
i )

P(ol
i)
, (5)

DJSi = 0.5×
[
DKLi

(
P(oi) ‖ P(wg

i )
)
+DKLi

(
P(wg

i ) ‖ P(oi)
)]
,

(6)

wi =
DJSi

∑i DJSi

, (7)

where wi is the resulting updated weight for current fu-
sion, P(wg

i ) = wg
i represents the global weight learnt from

the training set using a specific weighting strategy (e.g.,
entropy-based weighting, residual probability energy, etc., as
described in [23]); P(oi) = P(λi|γ), which is the previous
classification probability {t − 1, ..., t − n}, i.e., posteriors
corresponding to an ith modality; wi is weight based on JS
divergence [23].

3) SVM LATE FUSION APPROACH: In this case, a SVM
classifier (working as a fusion-classifier) receives the outputs
from the CNNs and then outputs a confidence score, or a
decision, concerning the classification problem. Here, a SVM
with linear-kernel (using the LibSVM library) was applied to
operate as late fusion-classifier. The SVM is firstly trained
by using the CNNs scores (Li from the training-set) and
then, based on the trained model, the SVM is used on the
testing-set to estimate the desired combined score.

VII. EXPERIMENTS AND RESULTS

All results, monocular camera (MC), depth map (DM),
reflectance map (RM) and early sensor fusion (gray-scale
image + DM + RM), were analyzed using F-score, recall
and precision performance measures and ROC curves (area
under the curve-AUC), allowing a more detailed and accurate
analysis of the results, as showed in Table II. The F-scores,
recalls and precisions were obtained considering a threshold
of 0.5. The number of pedestrian and non-pedestrian exam-
ples is unbalanced, as shown in Table I, thus, F-score is here
considered because it is a suitable performance measure for
unbalanced cases.



TABLE II
RESULT OF CLASSIFIERS. CALCULATIONS WERE MADE WITH A

THRESHOLD OF 0.5 TO OBTAIN THE F-SCORES VALUES.

F-score Precision Recall AUC
Monocular Camera (MC)

0.8953 0.8887 0.9019 0.9928
Depth Map (DM)

0.7886 0.8479 0.7370 0.9769
Reflectance Map (RM)

0.8872 0.8733 0.8811 0.9901
CNN Fusion (Early)

0.9053 0.9125 0.8982 0.9966
Jensen-Shannon (JS)

0.9080 0.9375 0.8804 0.9966
Average (Mean)

0.9082 0.9320 0.8856 0.9967
Maximum (Max)

0.8592 0.7695 0.9725 0.9963
Minimum (Min)

0.7931 0.9824 0.6649 0.9954
Product (Prod)

0.9105 0.9343 0.8878 0.9969
SVM late fusion

0.1794 0.4730 0.1107 0.9023
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Fig. 4. Receiver Operating Characteristic (ROC) curves, on the testing set,
for the sensors modalities evaluated.

Figure 4 shows the ROC curves, calculated on the testing
set, for the CNN models using color-images (camera), depth
maps (depth) and reflectance maps (reflectance). In addition,
optimal operating points for threshold equal to 0.5 are shown
in the curves and the values are indicated in the legend -
designated by the superscript (∗), followed by [FP,T P]. The
curves are zoomed and displayed in the interval from 0 to
0.5, both for true positive rate (TP) and false positive rate
(FP).

Figures 5 and 6 show the ROC curves for the fusion
strategies. The results for the deterministic fusion rules,
obeying the late scheme as described in Sect. VI-B.1, are
shown in Fig. 5, while the testing results for the early fusion
(using a 3-channel CNN) and for the more sophisticated
fusion strategies - using JS divergence and rescoring SVM -
are shown in Fig. 6.
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Besides the ROC curves, the performance measures
(sometimes called metrics) used in our evaluation allow us to
compare, in a more accurate way, the following approaches:
single modality CNNs (Table II and Fig. 4); non-learning late
fusion (Fig. 5); early fusion using a CNN and the learning-
based late fusions (Fig. 6). The area under curve (AUC) is,
except for the late fusion using SVM, not enough for a fair
comparison. Looking at the values of the optimal operating
points and the F-score values (note that the reference thre-
shold is 0.5 and the dataset is unbalanced), we can conclude
the following:
• For single modality, camera performs better than DM

and RM. However, the classification performance using
LIDAR reflectance (RM) is very promising;

• Among the non-learning rules, the simple mean
achieved good results. The maximum rule is very good
in terms of TP but, the FP increases. The normalized
product rule attained the best results among these fusion
category;



• For the learning fusion strategies, the linear-SVM had
inferior performance. On the other hand, the JS (late)
and the CNN (early) achieved equivalent performance.

Finally, by comparing the single sensor modalities (camera
or LIDAR) and the multi-modality fusion strategies, we can
conclude that in all cases (except for the SVM rule) the
combination of camera and LIDAR data increases the clas-
sification performance. Although such performance results
were expected i.e., fusion vs single-modality is favorable to
the former, it is to be noted the very promising performance
due to the LIDAR’s reflectance maps.

VIII. CONCLUSION AND REMARKS

An approach for pedestrian classification based on deep-
learning and data-fusion strategies, using camera and LIDAR
data, has been presented in this paper. Pedestrians and non-
pedestrians labels were extracted from the KITTI Object
dataset. Therefore, we composed a ‘binary classification’
dataset consisting of pedestrian and non-pedestrian (all re-
maining categories). KITTI also provides the corresponding
LIDAR scans, which contains the 3D coordinate points
as well as the reflectance data. For the LIDAR data, and
by using spatial filtering, we calculated depth (DM) and
reflectance (RM) maps to allow a direct implementation of
CNN-based models.

Based on camera images and LIDAR maps, and using
CNN as learning model, were considered two cases: 1)
single-modality i.e., by training a CNN with image (camera),
DM, and RM individually; 2) fusion schemes: early fusion,
where a 3-channel CNN is trained using data from the
three modalities; and late fusion, where non-learning (e.g.,
average, product, maximum) and learning techniques (JS
divergence, SVM) were implemented and used to combine
single-modalities CNNs.

Experiments on both camera and LIDAR data were carried
out to assess the classification performance of the single and
multi-sensor modalities, early and late fusion schemes. From
the experimental results reported in this paper, the fusion
strategies attained the best results in comparison with the
individual CNNs, as shown in the ROC curves and Table II.
Finally, it is worth noting the promising results achieved by
the LIDAR reflectance map approach.
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